Flüssigkeit-Dampf-Gleichgewichte der binären Systeme Benzol–Methyläthylketoxim und n-Heptan–Methyläthylketoxim

Von K. QUITZSCH, V. WUNDERLICH und G. GEISELER

Mit 6 Abbildungen

Inhaltsübersicht

Die Flüssigkeit-Dampf-Gleichgewichte der Systeme Benzol-Methyläthylketoxim und n-Heptan-Methyläthylketoxim wurden unter isobaren Bedingungen zwischen 150 und 300 Torr mit Hilfe einer modifizierten Umlaufapparatur nach GILLESPIE ermittelt. Die aus den ermittelten Gleichgewichtsdaten errechneten Aktivitätskoeffizienten wurden auf ihre Konsistenz überprüft. Ihre Abhängigkeit vom Molenbruch läßt sich in grober Näherung durch die zweikonstantige Gleichung von VAN LAAR beschreiben.

Im Zusammenhang mit infrarotspektroskopischen und thermodynamischen Untersuchungen über das Assoziationsverhalten stellungsisomerer Alkanoxime¹) in unpolaren Lösungsmitteln wie Tetrachlormethan und niedrigsiedenden Kohlenwasserstoffen ergab sich die Frage, ob die Flüssigkeit-Dampf-Gleichgewichte solcher Systeme aus recht unterschiedlich hoch siedenden Komponenten durch isobar arbeitende Umlaufapparaturen üblicher Art befriedigend ermittelt werden können. Aus diesem Grunde haben wir die Systeme Benzol-Methyläthylketoxim und n-Heptan-Methyläthylketoxim bei konstantem Druck zwischen 150 und 300 Torr über den gesamten Molenbruchbereich untersucht. Über die Ergebnisse sei hier kurz berichtet.

Experimentelles

Die isobaren Gleichgewichtsmessungen wurden mit einer modifizierten Umlaufapparatur nach GILLESPIE²) vorgenommen. Sie ist in Abb. 1 schematisch wiedergegeben. Flüssigkeits- wie Kondensatfalle bestehen aus U-förmig gebogenen Rohren, aus denen die Analysenproben durch die Schliffe I und II entnommen werden können. Die Höhe der Überlaufschenkel sind so bemessen, daß eine Zirkulation des Dampfes in umgekehrter Richtung in-

¹) G. GEISELER u. J. FRUWERT, Z. phys. Chem. N. F. 26, 14 (1960); G. GEISELER, K. QUITZSCH, R. GESEMANN u. H.-J. GESEMANN, Z. phys. Chem. N. F. 35, 10 (1962).

²) D. T. C. GILLESPIE, Ind. Eng. Chem. Analyt. Ed. 18, 575 (1946).

folge des entsprechend wirkenden hydrostatischen Druckes verhindert wird. Im übrigen ist die Arbeitsweise der Apparatur gleich der von GILLESPIE. Geheizt wird mit einer Chromnickeldrahtspirale von $10\,\Omega$ Widerstand. Um Zersetzung des Oxims durch die direkte Berührung zu vermeiden, ist sie in eine Glashülse eingeschmolzen. Der gesamte rechte Teil der Apparatur befindet sich in einem Luftthermostaten. Die Siedetemperaturen können auf $\pm 0,03^{\circ}$ und der Arbeitsdruck auf $\pm 0,1$ bis 0,2 Torr genau eingehalten werden. Zur Konstanthaltung des Druckes dient ein elektrischer Druckregler. Zwischen ihm und der Pumpe bzw. der Apparatur liegen Puffervolumina von je 401 Inhalt.

Die Einstellung des Gleichgewichtes war nach 90 Minuten erreicht, diese Zeit entspricht den von RIEDER und THOMPSON³) gemachten Angaben.

Abb. 1. Modifizierte Gleichgewichtsapparatur nach GILLESPIE

Das Oxim wurde durch Umsetzung des Methyläthylketons mit Hydroxylamin hergestellt; nach sorgfältiger Fraktionierung über eine leistungsfähige Füllkörperkolonne konnte eine sehr reine, konstant siedende Substanz erhalten werden. Die Lösungsmittel wurden nach üblichen Methoden gereinigt und getrocknet. Das Oxim und die beiden Lösungsmittel sind durch die in Tab. 1 aufgeführten Daten gekennzeichnet.

Tabelle 1 Physikalische Eigenschaften

	Кр. ₇₆₀ °С	n ²⁰ _D	d420
Oxim	152,0	1,44311	0,92312
Benzol	80,13	1,50108	0,87909
n-Heptan	98,35	1,38775	0,68364

³) R. M. RIEDER u. A. R. THOMPSON, Ind. Eng. Chem. 41, 2905 (1949).

K. QUITZSCH, V. WUNDERLICH u. G. GEISELER, Flüssigkeit-Dampf-Gleichgewichte 121

Die Analysen erfolgten auf refraktometrischem Wege. Für die Proben, in denen der Gehalt an Oxim einem Molenbruch unter 0,5 entsprach, wurde das PULFRICH-Refraktometer, für die übrigen das ABBE-Refraktometer verwendet. Die Molenbrüche konnten auf \pm 0,001 genau ermittelt werden.

Versuchsergebnisse

In Tab. 2 sind für beide Systeme die experimentell ermittelten Gleichgewichtsdaten zusammengestellt. Die Indices ' und " beziehen sich auf die Flüssig- bzw. Dampfphase, die Indices 1 und 2 auf den Kohlenwasserstoff bzw. das Oxim. Wie aus den Zahlen und aus den Abb. 2 und 3 zu ersehen ist, sind, wie erwartet, beide Systeme stark unideal.

stem: n-Heptan-Methyläthylketoxim. p = 300 Torr

Zur Ermittlung der Aktivitätskoeffizienten wurden die erforderlichen Sättigungsdampfdrücke des reinen Methyläthylketoxims für den untersuchten Meßbereich mit der gleichen Umlaufapparatur ermittelt. Ihre Temperaturabhängigkeit läßt sich durch die nachstehend aufgeführte ANTOINE-Gleichung beschreiben:

$$\log p = 7,6695 - \frac{1692,8}{201,2 + t}$$
 (35-135°C).

Die Sättigungsdampfdrücke von Benzol und n-Heptan sind neueren Arbeiten der Literatur entnommen worden. Sie folgen den Gleichungen:

$$\log p = 23,11751 - \frac{2459,746}{T} - 5,20992 \log T \quad [Benzol^4)]$$
$$\log p = 6,88686 - \frac{1258,27}{215,70 + t} \quad [n-Heptan^5)].$$

4) R. DREYER, W. MARTIN u. U. v. WEBER, J. prakt. Chem. (4) 1, 324 (1955).

⁵) J. BROWN u. A. H. EWALD, Austr. Sci. Research, Ser. A 4, 198 (1951).

System: Benzol-Methyläthylketoxim											
p = 150 Torr			p p	p == 200 Torr			= 250 (Forr	$\mathbf{p} = 300 \ \mathbf{Torr}$		
$\mathbf{x}_{1}^{'}$	x''	t (°C)	. x ₁ '	x,"	<u>t</u> (°C)	$\mathbf{x}_{1}^{'}$	_x,"	t (°C)	x ₁	x,"	t (°C)
0,000	0,000	107,4	0,000	0,000	114,4	0,000	0,000	120,0	0,000	0,000	124,9
0,113	0,802	75,8	0,119	0,795	82,5	0,123	0,790	88,0	0,041	0,455	112,2
0,127	0,827	73,6	0,160	0,870	74,9	0,170	0,869	80,6	0,131	0,790	93,0
0,153	0,870	68,2	0,209	0,905	70,2	0,217	0,906	75,4	0,178	0,859	85,9
0,156	0,875	67,9	0,296	0,945	62,0	0,302	0,940	66,0	0,223	0,902	81,0
0,229	0,924	60,3	0,346	0,955	59,7	0,345	0,949	66,0	0,294	0,935	74,0
0,337	0,960	51,8	0,482	0,975	52,3	0,498	0,971	58,1	0,349	0,949	70,3
0,482	0,979	44,9	0,542	0,979	50,5	0,561	0,975	56,4	0,505	0,972	62,6
0,527	0,983	43,7	0,605	0,985	48,4	0,601	0,983	54,2	0,565	0,978	61,3
0,605	0,988	42,0	0,692	0,988	47,1	0,696	0,987	52,6	0,625	0,981	59,3
0,700	0,988	39,8	0,759	0,990	45,8	0,756	0,989	51,64	0,698	0,985	57,4
0,759	0,990	38,72	0,801	0,991	44,97	0,813	0.991	50,67	0,762	0,985	56,7
0,810	0,992	37,93	0,847	0,994	44,34	0,838	0,991	50,11	0,790	0,989	56,15
0,846	0,994	37,43	0,901	0,994	43,66	0,844	0,991	50,08	0,810	0,990	55,06
0,901	0,995	36,76	0,936	0,996	43,21	0,902	0,994	49,30	0,839	0,990	54,24
0,937	0,998	36,31	0,966	0,998	42,83	0,936	0,995	48,80	0,903	0,993	53,74
0,965	0,999	35,93	1,000	1,000	42,44	0,966	0,997	48,42	0,936	0,993	53,34
1,000	1,000	35,50				1,000	1,000	47,91	0,966	0,997	53,34
	F		ł	1		•	I		1,000	1,000	52,82
											•

Tabelle 2 Gleichgewichtszusammensetzung in Abhängigkeit vom Molenbruch System: Benzol-Methyläthylketoxim

System:	n-Heptan-	Methyläthylketoxim
· •/	1	

\mathbf{p}	= 150 '	Forr	\mathbf{p}	= 200]	Forr	р	= 250]	forr	p = 300 /		
x,	$\mathbf{x}_{1}^{''}$	t (°C)	$\mathbf{x}_{1}^{'}$	x,"	t (°C)	$\mathbf{x}_{1}^{'}$	x,''	t (°C)	$\mathbf{x}_{1}^{'}$	$\mathbf{x}_{1}^{''}$	t (°C)
0,000	0,000	107,4	0,000	0,000	114,4	0,000	0,000	120,0	0,000	0,000	124,9
0,035	0,660	87,6	0,035	0,615	94,9	0,032	0,546	102,0	0,025	0,435	110,6
0,124	0,874	69,3	0,123	0,872	76,0	0,144	0,869	80,8	0,108	0,815	90,8
0,197	0,917	63,4	0,197	0,902	71,3	0,185	0,891	78,2	0,130	0,845	88,3
0,308	0,939	59,11	0,305	0,929	66,46	0,287	0,917	73,60	0,190	0,891	82,3
0,363	0,947	57,97	0,435	0,948	64,19	0,348	0,923	72,30	0,290	0,911	79,13
0,445	0,953	56,66	0,525	0,952	62,82	0,435	0,945	70,41	0,318	0,918	78,11
0,532	0,961	55,35	0,650	0,956	60,94	0,525	0,948	68,76	0,430	0,926	75,77
0,628	0,959	54,00	0,712	0,955	60,49	0,623	0,955	67,39	0,516	0,939	74,18
0,711	0,963	52,93	0,766	0,956	59,95	0,708	0,955	66,43	0,617	0,944	72,25
0,761	0,969	52,63	0,810	0,961	59,57	0,765	0,958	65,96	0,711	0,951	71,39
0,822	0,967	52,15	0,877	0,968	59,13	0,816	0,961	65,47	0,763	0,955	70,96
0,853	0,968	52,05	0,897	0,975	59,07	0,874	0,963	65,00	0,820	0,958	70,49
0,878	0,971	51,85	0,927	0,979	58,90	0,897	0,968	64,98	0,852	0,960	70,28
0,930	0,982	51,65	0,949	0,982	58,83	0,930	0,975	64,80	0,897	0,968	69,96
0,947	0,982	51,49	0,975	0,988	58,65	0,961	0,985	64,65	0,930	0,975	69,81
0,975	0,989	51,38	0,979	0,990	58,63	0,980	0,987	64,60	0,951	0,978	69,76
1,000	1,000	51,37	1,000	1,000	58,63	1,000	1,000	64,52	1,000	1,000	69,70

	1.40	ene o					
Aktiviti	ätskoeffizienten	der Mischkor	npone	nten			
i	n Abhängigkeit	vom Molenbr	uch				
	System · Benzol-	lethyläthylketoy	im				
		Letity hubity the box					
150 Torr	200 Torr	250 Tor	250 Torr				
(°C) f. f.	t(°C) f. i f	$t(^{\circ}C) \downarrow f$	l f	t(°C)	f	ĺ	
(0) 1 12			1 12	1 01 011	11	ŧ.	

E

Tabello 3

	-	Lot dor	·		-00 - 0.	-	000 1011		000 101			
x,	t(°C)	\mathbf{f}_1	f_2	t(°C)	f_1	f_2	t(°C)	f,	f_2	t(°C)	f ₁	\mathbf{f}_2
0,05	91,3	1,480	1,009	98,9	1,540	1,000	105.0	1,531	1,018	110,5	1,545	1,008
0,10	78,7	1,562	0,891	86,8	1,591	0,956	92,9	1,620	0,880	98,7	1,613	0,868
0,20	62,9	1,573	0,969	70,5	1,610	0,929	77.1	1,617	0,876	83,4	1,573	0,878
0.30	53,9	1,516	0,991	62,1	1,498	0,902	68,3	1,506	0,893	73,9	1,501	0,841
0,40	48,4	1,431	0,915	56,3	1,407	0,983	62,5	1,402	1,000	66,9	1,442	1,036
0,50	44,4	1,352	0,856	51,6	1,358	0,992	58,1	1,325	1,066	62,8	1,351	0,983
0,60	41,8	1,257	0,970	48,7	1,272	1,026	54,9	1,303	1,060	60,2	1,245	0,980
0,70	39,8	1,173	1,131	46.7	1,184	1,161	52,5	1,183	1,192	58,0	1,159	1,111
0,80	38,2	1,100	1,329	45,0	1,112	1.292	50,8	1,108	1,409	56,0	1,096	1,250
0,85	37,4	1,073	1,333	44,3	1,078	1,351	-50,0	1,077	1,587	55,1	1,068	1,403
0,90	36,7	1,044	1,676	43,6	1,049	1,406	49.3	1,047	1,854	54,2	1,045	1,667
0,92	36,5	1,031	1,596	43,3	1,039	1,351	49,0	1,037	1,968	53,9	1,035	1,777
0,95	36,1	1,017	1,749	43,0	1,020	1,468	48,6	1,022	2,587 .	53,5	1,019	1,731
0,98	35,7	1,004	2,245	42,6	1,006	1,883	48,2	1,007	3.311	53,1	1.004	2,958

System: n-Heptan-Methyläthylketoxim

	150 Torr			200 Torr			250 Torr			300 Torr		
\mathbf{x}^{1}	t(°C)	f,	\mathbf{f}_2	t(°C)	. f ₁	: f ₂	t(°C)	f ₁	f_2	t(°C)	fı	\mathbf{f}_2
0.05	82,9	4,822	0,764	91,1	4,797	0,768	96,9	4,828	0,823	103,3	4,471	0,856
0.10	71,8	3,956	0,833	79,9	3,950	0,808	86,0	3,993	0,808	92,5	3,801	0,822
0,20	63,2	2,901	0,846	71,0	2,868	0,881	76,4	2,945	0,912	82,4	2,889	0,831
0,30	59,3	2,295	0,883	66,9	2,275	0,925	73,3	2,240	0,953	78,7	2,236	0,873
0,40	57,4	1,872	0,959	64,8	1,875	0,942	71,0	1,851	1,029	76,1	1,851	1,019
0,50	55,8	1,605	0,981	63,1	1,609	1,087	69,2	1,604	1,115	74,3	1,590	1,176
0,60	54,3	1,425	1,349	61, 6	1,421	1,422	67,7	1,417	1,291	72,7	1,411	1,419
0,70	53,2	1,279	1,846	60,5	1,272	1,928	66,6	1,272	1,614	71,5	1,271	1,762
0,75	52,7	1,219	2,184	60,0	1,213	2,272	66,0	1,215	1,940	71,0	1,211	2,048
0,80	52,3	1,163	2,717	59,6	1,159	2,637	65,6	1,157	2,415	70,6	1,155	2,441
0,85	52,0	1,112	3,261	59,3	1,110	3,113	65,2	1,108	3,123	70,2	1,111	2,946
0,90	51,7	1,070	4,019	59,0	1,067	3,919	64,9	1,065	3,892	70,0	1,063	3,536
0,92	51,6	1,055	4,440	58,9	1,053	4,053	64,8	1,051	4,416	69,9	1,047	4,019
0,95	51,5	1,030	5,513	58,8	1,030	4,812	64,7	1,028	5,081	69,8	1,024	5,089
0,98	51,4	1,012	6,550	58,7	1,011	6,415	64,6	1,010	6,381	69,7	1,006	6,987

In Tab. 3 sind die Aktivitätskoeffizienten der Mischkomponenten in Abhängigkeit vom Molenbruch aufgeführt. Das asymmetrische Verhalten der beiden binären Systeme geht deutlich aus dem Verlauf der graphisch ausgeglichenen Kurven in Abb. 4 und 5 hervor; das n-Heptansystem ist weniger asymmetrisch, weist jedoch im Verdampfungsverhalten eine stärkere Nichtidealität auf. Nach der Methode von HERINGTON⁶) sind für alle Isobaren die Bedingungen für die thermodynamische Konsistenz der Aktivitätskoeffi-

Abb. 4. Nach ausgeglichenen experimentellen Daten berechnete Aktivitätskoeffizienten. System: n-Heptan-Methyläthylketoxim. p = 150 Torr

Abb. 5. Nach ausgeglichenen experimentellen Daten berechnete Aktivitätskoeffizienten. System: Benzol-Methyläthylketoxim. p = 150 Torr

zienten erfüllt. In grober Näherung läßt sich die Abhängigkeit der Aktivitätskoeffizienten vom Molenbruch durch die zweikonstantige Gleichung von

Abb. 6. Siedekurven des Systems Benzol--Methyläthylketoxim bei verschiedenen Drücken

VAN LAAR darstellen, für das Benzolsystem besser als für das n-Heptansystem. Wie aus den Zahlen der Tab. 4 hervorgeht, werden für ersteres mit Hilfe der empirisch ermittelten Konstanten A und B der VAN LAARschen Gleichung auf dem Wege über die rechnerisch bestimmten Aktivitätskoeffizienten brauchbare Werte für die Partialdrücke sowie den experimentell vorgegebenen Gesamtdruck erhalten.

Aus den vorliegenden Daten ist zu ersehen, daß sich die Gleichgewichtsverhältnisse für Systeme vorliegender Art durch isobar arbeitende Umlaufapparaturen befriedigend genau untersuchen lassen. Wird jedoch angestrebt, aus derartigen Messungen die Exzeßfunktionen zu gewinnen,

⁶⁾ E.F.G. HERINGTON, Nature 160, 610 (1947).

muß in einem verhältnismäßig schmalen Druckbereich (s. Abb. 6) eine ganze Reihe eng beieinander liegender Isobaren aufgenommen werden. Dann aber ist es zweckmäßiger von vornherein unter isothermen Verdampfungsbedingungen zu messen.

berech	net mit Beispie	Hilfe de l: Benzol-	r Gleich -Methyläth	ung von ylketoxim	VAN LAAF
<u> </u>	p = 250	f.	= 0,225;	$\mathbf{B} = 0,720$)
0,05	1,652	1.000	127.4	129.2	256.6
0,10	1,622	1,002	180,0	71,8	251,8
$0,20 \\ 0.30$	1,561 1.496	1,009 1.023	215,7 233.4	30,5 17.2	246,2 250.6
0,40	1,426	1,051	243,6	11,0	254,6
0,50 0.60	1,351 1 271	1,098 1 184	247,4	7,5 5 3	254,9 248.4
0,70	1,189	1,343	247,7	3,9	251,8
0,80 0.90	1,108 1.036	1,668 2.465	247,4	3,0 2 0	250,4 248.0
0,95	1,011	3,371	246,5	1,3	247,8

Tabelle 4 Partialdrücke der Mischkomponenten berechnet mit Hilfe der Gleichung von van Laar Beispiel: Benzol-Methyläthylketoxim

Zu etwas größeren Abweichungen vom tatsächlichen Wert für p (im Mittel \pm 3%) führten analoge Berechnungen der Isobaren vom System n-Heptan-Methyläthylketoxim. Bei 250 Torr wurden hierzu z. B. die Konstanten A = 0,629 und B = 0,878 benutzt.

Leipzig, Physikalisch-Chemisches Institut der Karl-Marx-Universität.

Bei der Redaktion eingegangen am 1. August 1964.